

ECOMONDO, Rimini, 10-Nov-11

Synthesis of Silicon Carbide

János Szépvölgyi, Zoltán Károly

Institue of Materials and Environmental Chemistry, CRC HAS, Budapest, Hungary

www.chemres.hu/aki

INSTITUTE OF MATERIALS AND ENVIRONMENTAL CHEMISTRY, CRC HAS

Research topics in MATCHEM

- Synthesis of advanced materials
 - Layers, bulk; inorganic, organic; micro, nano
- Synthesis and chemistry of polymers
 - Commercial, novel
- Electrochemistry and corrosion
 - New measuring methods; active, passive
- Inorganic biochemistry
 - Biochemistry of metal complexes

Research topics in ENVCHEM

- Environmental monitoring and analysis
- Renewable energy
 - Biomass and solar
- Waste processing and remediation
 - Hazardous organic & inorganic
 - Chemical & thermal
 - Soil, water, air
- New technologies
 - Low environmental impact

- Staff number: 85
- Researchers: 52 (<35 years: 26)
- Annual budget: 2,500,000 EUR

Funding (2010)

■ Public (HAS)

Industrial projects

■ International R&D projects

■ National R&D projects

Properties, production, application

SILICON CARBIDE

Properties of silicon carbide

- High strength and hardness (21-25 GPa) at high T
- Low thermal expansion $(5 \cdot 10^{-6} \text{K}^{-1})$
- Good thermal conductivity (50 W·m⁻¹·K⁻¹)
- Thermal shock resistance
- Thermal and chemical stability
- Resistant to
 - Oxidation even at high T
 - Acids and alkalis, molten metals
- Semi-conductive properties

Applications of silicon carbide

- Self-sharpening abrasives, cutting tools,
- Refractory materials
- Diesel particulate filters
- Membranes for water purification
- Filters for hot gas cleaning
- Heat exchangers, heating elements
- Dielectric coatings
- Blue LEDs
- Varistors

Production of silicon carbide

• Microsized SiC

- Acheson process: CR of SiO₂ at 2200-2400 °C $\Rightarrow \alpha$ -SiC
- Rapid carbothermal synthesis $\Rightarrow \alpha$ -SiC
- High energy mechanical milling $\Rightarrow \beta$ -SiC
- Micro- and nanosized SiC
 - − Pyrolysis of SiCH₃Cl₃ or TPS at 1000-1500 °C $\Rightarrow \alpha$ and β-SiC
 - − Sol-gel synthesis from Si(OR)4 \Rightarrow α- and β-SiC
 - Vapor phase reactions of SiH₄ or SiCl₄ and CH₄ or C₂H₄ $\Rightarrow \beta$ -SiC

Novel synthesis of silicon carbide

TYGRE PROJECT

SiC from waste tyre gasification residue

ENEA

- Horizontal furnace (HF)
- >1400°C
- t > 30 min

IMEC

- Thermal plasma reactor (TPR)
- > 2000 °C
- Several seconds

Conditions of synthesis in HF

• Carbon sources

- Chars from pyrolysis/gasification
- Active carbon

Silica sources

- Alternative Silica Sources

Process parameters

- Temperature
- Residence time
- Composition of the gas phase

Summary of tests in HF

Synthesis conditions

- Carbon : silica molar ratio > 3:1
- T > 1400°C, t > 30 min

• SiC yield

– 90 – 95 % of theoretical yield

Properties of products

- Microcrystalline, mainly β -SiC particles and fibers in Ar
- Si_3N_4/SiC composite in N_2

Particle synthesis in TPR

TD calculations for **TPR**

Formation of SiC is favored from 1600 to 2500 °C

Conditions of synthesis in TPR

Carbon sources

- Char from tyre pyrolysis/gasification
- Active carbon
- Commercial graphite

Silica sources

- Alternative Silica Sources
- Fly ash

Parameters studied

- C : SiO₂ molar ratio
- Feed rate of precursors
- Plasma gas composition
- Cooling rate of products

Chemical composition of SiC from TPR

Bulk (wt%)

- Oxygen: 4.0
- Carbon: 32.8
- Al, Ca, Mg, Na, Si, Zn: about 5

Surface (wt%)

- 0:12.5
- C: 35.1
- Si: 47.1

Morphology of SiC from TPR

Nanosized (main fraction)

Microsized (minor fraction)

Summary of tests in TPR

• Synthesis conditions

- Carbon : silica molar ratio: > 4:1
- Plasma gas: Ar + He
- Specific energy: 4-5 kWh/kg

• SiO₂ conversion

– Above 70 %

• Properties of products

- Nanocrystalline, mainly β-SiC particles
- Amorphous Si₃N₄ in the presence of NH₃

Comparison of HF and TPR

Parameter	HF	TPR
Yield (relative, wt%)	> 90%	> 70%
By-products	Low SiO ₂ , C	SiO ₂ , C, Si, Zn
Phases (purified)	β-SiC	(α+β)-SiC, Si, C
Morphology	Microcrystals and fibers	Mainly nanocrystals
Process	Simple, conventional	Special, innovative
Sintering	Conventional	Development needed
Application	Membrane	Membrane, others
Price (Aldrich)	100 EUR/kg	4000 EUR/kg

Conclusions

- Waste tyre pyrolysis residue ⇒ high grade silicon carbide
- Both HF and TPR are proper tools
- Properties depend on
 - Quality of raw materials
 - Synthesis conditions
- In TPR nanosized SiC
- High added value
- Scale-up in progress